
Novel data structures for label based queries specifically efficient for
billion+ property graph networks using Kinetica-Graph †

B. Kaan Karamete∗, Eli Glaser

Kinetica DB Inc.
901 North Glebe Road, Arlington, Virginia 22203

Abstract

This paper discusses a novel data structure that efficiently implements label based graph queries particularly
for very large graphs. The major issues in large graph databases is the memory foot-print of label based
property associations to graph entities and subsequent query speeds. To this end, unlike the available graph
databases, that use key-value pairs using map like associative containers, we have devised a novel data
structure that is superior in its memory foot-print as well as its fast search characteristics without any
compromise on the number of labels that can be associated to graph nodes and edges. We will demonstrate
the power of this novel unconventional data structure over billion plus graphs within the context.

Keywords: Data structures, Large Graph Networks, Fast Queries

1. Introduction

It has been a common software engineering task
to find the most feasible and efficient data struc-
tures/containers for the algorithms to succeed with
an acceptable outcome often measured by its accu-
racy, storage characteristics and its speed of exe-
cution. Modern data structures such as the widely
used STL [1] containers are rectified over the past
decade to do the heavy lifting and take the burden
off the algorithms as much as possible. Re-usability
of the data structures was the main goal so that the
algorithms could be designed for any data types.
This flexibility of using the same containers pro-
vided generic solutions via the use of templates as
mere space-holders for any data/object type [2]. In
80s, and 90s, when the computing power was not at
its apex, but certainly in its ascendancy, often re-
ferred to as the Fortran era (no pun intended), there
was more focus on the data structures to fit into
smaller range of memory architectures that existed
in the hardware technology at the time. Templated
objects and structures were not at the fore-front for
a very valid reason of being able to solve as big as

∗Corresponding author: Bilge Kaan Karamete,
kkaramete@kinetica.com, karametebkaan@gmail.com
†Kinetica-Graph: https://arxiv.org/abs/2201.02136

possible within the existing limited comput-power.
However, as the computational prowess improved
over the following decades, the appetite for better
and more efficient data structures did not diminish,
and particularly for certain use cases where even
with the advent of new hardware, the need for light
and efficient data structures never ceased to exist.

In today’s fast paced software practices, habit-
ual selection of readily available standard STL data
containers are preffered with not much concern on
the scalability that often lead to unacceptable re-
sults when the data size is immense and cross rela-
tions play a big factor in speed and storage. The
deviation from efficiency is more pronounced par-
ticularly for billion+ large graphs in which relations
between the graph entities and the unlimited string
labels result in one-to-many and many-to-many as-
sociations. Many graph vendors implement the la-
bel associations to graph nodes and edges using
this habitual standard key-value look-up contain-
ers [3, 4, 5, 6]. Instead of addressing the efficiency of
these data-structures, these vendors suggested the
distributed graph representations when it is sim-
ply not possible to store and solve large (billion+)
graphs. However, suggesting a wrong recipe for a
much simpler issue creates bigger bottlenecks; the
clustering of the partitions has a huge impact on

ar
X

iv
:2

31
1.

03
63

1v
1

 [
cs

.D
S]

 7
 N

ov
 2

02
3

the speed of the distributed solves and queries since
the scalar values have to be transferred across adja-
cent partitions many times for convergence. If the
solve or query graph traversals need to jump back
and forth across partitions frequently due to inter-
mingling of the partitions with poor clustering char-
acteristics, it would take many more iterations to
converge. Hence the seemingly much simpler prob-
lem of devising a light weight and efficient data con-
tainers the issue is transformed into a more complex
problem of how to make partitioning more efficient
with the least amount of inter-partition boundary
nodes.
Before we introduce and suggest this light weight

and super efficient entity-label data structures, it is
prudent to give some technical details and summary
over the conventional sorted or hashed look-up con-
tainers. Singly or multiply associative key-value
pair look-up containers often implement red-black
trees (RBTrees) for sorted balanced trees [7, 8], a bi-
nary search structure with user-specified sort func-
tions or the hash tables where the item is hashed
with the user specified hashing function. For the
latter, the item is appended to a list of items
whose hash keys are the same within the same
bucket, known as hashing by chaining [9, 10], or
using a mechanism to spread the data, called prob-
ing [11, 12] by pinpointing to the empty bucket loca-
tions for the same hash-key entries (hash-collisions).
Hashing by chaining technique is easier to imple-
ment and control, however, for dynamic scenarios,
reallocation (rehashing) is required that can quickly
result in de-fragmentation and large memory foot
prints, on the other hand probing techniques could
suffer on both the speed and the large memory is-
sues for very large data particularly for high number
of collisions as well. Sorted maps (RBTrees) has the
logarithmic search time complexity, however, the
performance quickly degrades when the tree gets
larger as summarized in Figure 1. These are the
known issues for hashed and sorted maps but for
up-to a few to ten million item key-value look-ups,
these data structures are usually very hard to beat
on many technical merits that they offer reliably
standard implementations over a variety of OS ar-
chitectures [13].
In this paper, we’ll explain a very light weight

and efficient novel data structures in modeling the
graph labels to nodes and edges that enabled us cre-
ating 4+ billion edge graph with 64−char labels per
node/edge within less than a 1TByte (Terra Byte)
machine as well as distributed over 6-machines.

Figure 1: The comparison chart for key-value containers - far
right column is our native containers, that will be explained
in the context.

Figure 2: This is a simple graph that is often found on
wikipedia that has five (nodes) from the names, and with
Gender and interest labels connected to each other via edges
that have relation label. Note that the ’Age’ column is not
stored by the graph but accessible for graph restrictions etc,
via the hybrid OLAP expression support.

The graph ontology along with the direct and in-
verse relations between entities and labels will be
discussed on a simple example in Section 2. The
new data structures will be covered in Section 3.
Finally, in Section 4, a billion+ graph case will be
demonstrated both on single node and distributed
mode using this super efficient labeling framework.

2. Sample Input

A very simple example from Wikipedia is cho-
sen to depict the main characteristics of this new
data structure as shown in Figure 2. In Kinetica-
Graph [14], we have devised an intuitive set of SQL
constructs for graph endpoints. In Figure 3, cor-
responding SQL statement is shown for creating a

2

Figure 3: Our graph SQL syntax for creating the graphs
from table-column annotation combination tuples for labels,
nodes, and edges. For example, the edges are specified to
be constructed from the name1 and name2 columns’ record
values of Knows table. Our adhoc graph grammar, depicted
is intitutive and extendable

directed graph where Gender and Interest are the
labels to nodes and RELATION column is used to
depict the edge labels. We also created another
sub-graph from labels to show how the labeled en-
tities are connected to each other automatically, as
the graph’s ontology in the response field of the
endpoint. This information is encoded as the di-
graph format ascii file provided by the graphviz li-
brary [15] so that we could depict the result as the
graph schema in our graph-UI as shown in Figure 4.

3. New Data Structure

Proposed labeling framework has a few moving
pieces:

• An unordered map whose key is a set of
sorted label indices and value to a unique la-
bel set tuple index. For example: say, there
exists a node that is associated to both MALE
and chess labels, then the corresponding dict
encoded integers to these strings, say, 8 and 2,
respectively, are fused as one set being {8, 2}
is mapped to a unique tuple index of, say, 1
(See Figure 5), referred as Labels2index in Al-
gorithm 1.

Figure 4: This is the graph ontology generated from its node
and edge labels to depict how labels are connected to each
other. Our create/graph endpoint (API) generates this in-
formation as dot graph format in its response. For example,
20% of the graph edges are in between chess:MALE node
labels shown as a self-looping edge above.

• The inverse of above, i.e., a vector whose in-
dex corresponds to the label set tuple index
and value to the set of its label indices i.e.,
1 to {8, 2}, referred as Index2labels in Algo-
rithm 1.

• A vector for each label showing which la-
bel set tuple index it belongs to. MALE,
i.e., 8 to unique tuple index {1} and simi-
larly, chess as 2 to the same unique tuple in-
dex {1}. As either label is fused with an-
other label combo these entries are updated.
For example, {MALE, golf} appears with the
node Jane, and hence, a new tuple index of 4
has to be added to the MALE’s correspond-
ing vector of tuple indices, as {1, 4}, referred
as Label2indices in Algorithm 1.

• DLS structure [16], i.e., an in-place single
link data structure between the tuple indices
and the graph entity (node/edge) index (see
Figure 6):

– For each tuple index, there is a cached en-
tity index - the size of this vector is as
big as the number of label tuple combina-
tions.

– For each entity index, there are two val-
ues; the tuple index the entity belongs to
and the next graph entity index that also

3

belongs to the same tuple index. The size
of this vector is two times the number of
graph nodes/edges.

This structure is referred as SingleDLS in Al-
gorithm 1.

• There is an automatic recycling of indexes: A
FIFO queue created for dangling tuple in-
dexes - where there is no graph entities asso-
ciated with that index so that the same tuple
index would be re-used for new label combina-
tions. This is important as it limits the size
of the vectors used above. An integer id is
also stored and incremented each time to gen-
erate a new index id when the recycling queue
is empty, referred as Recyle and Maxid, re-
spectively, in Algorithm 1.

The above data structures have their own serial-
izations for byte dump into the cold or disk persists.
Adding a label to a graph entity algorithm is pro-
vided in Algorithm 1 and Algorithm 2. Basically,
the entity’s associated set of labels, i.e., a tuple in-
dex corresponding to this set is found, and if there
was no label associated already, a tuple index is cre-
ated for the single label, then the tuple index is in-
serted into the single linked list of the entity so that
there is a in-place link list among the entities that
have been associated with the same set of labels.
New tuple index generator and recycling structures
are also updated within the procedure illustrated in
Algorithm 2. For more detailed understanding of
the algorithm and the data structures for the new
labeling framework please visit the publicly avail-
able github project composed of two header files
only. SingleDLS data-structure will be explained
next in Section 3.1.

3.1. In-place single linked list

Note that the key design concept of the in-place
single linked lists, which is also used as the graph
edge topology data-structure in Kinetica-Graph, is
that there are two quantities, the entity and an as-
sociated index in this case and there can be many
entities associated with the same index, but once
an entity is associated with an index it can not be
multiply associated with another index. Otherwise,
in-place book-keeping of the linked ring of entities
that belong to the same index can not be concep-
tualized. So, the key concept in devising this new
labeling framework has been to satisfy this strong
unique associativity condition, which required us

to come up with the new concept of unique indexes
corresponding to sets of labels to create what is so
called a tuple index. If there is only one label to be
attached to an entity, then the tuple has one item
in the list, and if another label to be attached, then
a new unique tuple index is to be created from the
set of two labels.

In order to illustrate this, a key-value label group-
ing data-structure is shown in Figure 5. For in-
stance, the Gender is a label classifier (key-label)
for label values of Male and Female. Likewise, In-
terest is another key-label that four sub-interests
are created under this category as value-labels. The
in-place single link list for the label key and value
pairs are embedded in one vector as illustrated; e.g.,
all the interest labels can be unraveled by follow-
ing the Next link from the index of the Interest
key-label of 7, which goes to index 2, and the 2nd’s
Next link of 3 is traversed next until the ring stops
at the 5th (business) value-label (see the red lines),
forming a set of value labels {2, 3, 4, 5} for the key-
label index 2 (Interest) as shown in Figure 5. The
same concept is used in the SingleDLS where en-
tity vs label tuple index associations are stored as
shown in Figure 6. The single unique association of
a tuple index (corresponds to a set of label indices)
to a number of entities made this key idea possible
to use for the graph labels. This light weight data-
structure is very efficient since it has a fixed storage
and random access search characteristics, which is
a game changer when there are unlimited number
of associations are sought for very large size graphs.

4. Single and Distributed modes

The labeling framework explained in the previ-
ous Section 3 is scalable, fixed and small, enabling
queries in constant time. Hence the memory bottle-
neck for large graphs is circumvented to a degree
that does not require to distribute the graph at
least for upto ten-twenty billion node/edges within
1-2 TByte RAM limits. We have also exercised
a built-in transparent compression utility called
ZRAM [17], that compresses the large in-place sin-
gle list vectors implicitly and unzips when the data
is needed, all behind the scenes in real time, with
a very acceptable performance penalty increase of
20% based on our findings. It is possible to get 1 : 4
compressions with ZRAM that enables us to cre-
ate billion+ graphs constrained by the physical 1-2
TByte RAM limits on a single node without hav-
ing to distribute it . Distributed graph requires the

4

Figure 5: Label key Gender = 6 is associated with the grouping for the label values of Male = 8, F emale = 1 and the
Interest = 7 key has the respective label values of Chess = 2, Golf = 3, Dance = 4, Business = 5. The data is stored in a
novel 2-item vector (bottom) where label index is the vector index and it points to the next node that the node is associated
with the same key. Note that keys and label values share the same index space, i.e., keys and labels should be unique strings
across both sets as the design constraint.

Algorithm 1 Adds the string label and associates it with the vertex entity

1: procedure AddVertexLabel(Graph, V ertex, Label)
2: label index← Graph.GetDictEncodedIndex(Label)
3: pair index← SingleDLS.get pair index(V ertex)
4: old index← pair index
5: if not pair index then
6: pair index← addLabel(vector(1, label index))
7: else
8: existing tuples← Index2labels[pair index]
9: if not binary search(existing tuples, label index) then

10: newpair ← existing tuples
11: newpair.insert(upper bound(newpair, label index), label index)
12: pair index← addLabel(newpair)
13: end if
14: end if
15: SingleDLS.insert(V ertex, pair index)
16: if old index and old index ̸= pair index) then
17: recycle(old index) ▷ See github source; recycle() method.
18: end if
19: return pair index
20: end procedure

5

Algorithm 2 Adds a set of labels to the framework and returns the pair index corresponding to this set

1: procedure AddLabel(vector newpair)
2: next index←Maxid+ 1
3: if not Recycle.empty() then
4: next index← Recycle.back()
5: end if
6: Iterator ← Labels2Index.Insert({newpair, next index})
7: pair index← iterator.first.second
8: if iterator.second then ▷ If the newpair index is indeed a new tuple set
9: if not Recycle.empty() then

10: Recycle← Recycle.Size()− 1
11: else
12: Maxid←Maxid+ 1
13: end if
14: for label index in newpair do
15: if label index ≥ Label2indexes.Size() then
16: Label2indexes← Label2indexes.Size() + 1
17: end if
18: Label2indexes[label index].Insert(upper bound(Label2indexes, pair index), pair index)
19: end for
20: if pair index ≥ Index2labels.Size() then
21: Index2labels← Index2labels.Size() + 1
22: end if
23: Index2labels[pair index]← newpair
24: end if
25: return pair index
26: end procedure

6

Figure 6: Label set index 1 is composed of a label indices
set of 2, 8 for Chess = 2 and Male = 8, respectively. This
index is associated with the Cached graph node of 1 which
is Tom and via the in-place single list from Node index 1 to
2 as Alex.

Figure 7: Expero graph generated using the SQL cre-
ate/graph statement from the nodes and edges tables. The
nodes are char64 strings and one or more labels is attached
to each node and edge. There are 16 node labels, and 34 edge
labels in this dataset. The graph size is 4.3 billion edges with
2.8 billion nodes. The results of the above SQL call is shown
in Figure 9 for both distributed and single cases. The graph
schema (graph ontology) as the graph of labels is shown in
Figure 8.

queries and the solves to be performed by a more so-
phisticated algorithm that might need to jump back
and forth between the sub-graphs (partitions) in an
iterative manner until convergence. In the case of
graph queries (adjacency traversals), the query al-
gorithm might need to ping-pong among multiple
partitions many times until the traversal reaches to
the requested number of hops.

Therefore, when the graph size is too big to fit
into the available physical memory, there is no other
way but to distribute the graph which not only re-
quires to have an effective partitioning scheme but
also increases the total query/solve time substan-
tially. Though graph partitioning is not the topic
of this paper, and discussed in Kinetica-Graph pa-
per [14] in more detail, in short, our distribution
topology does not require replication of edges but
only the nodes at partition boundaries, known as
duplicated nodes. The predicates for graph par-
titioning can be random, id based or geometri-
cal (bounding boxes). However, with this labeling
framework, we have come up with a new criterion
for partitioning using the Louvain clustering algo-
rithm [18] or recursive spectral bisection (RSB) al-
gorithm [19] over the label graph (graph ontology)

7

Figure 8: Automatic graph ontology generated from the node/edge labels - the percent values are indicating the proportion of
number of edges between any two node labels over the entire graph. This graph has 4.3 billion edges and 2.8 billion nodes with
34 edge and 16 node labels.

which is generated automatically while creating the
main graph from the label connections. Louvain or
RSB solvers are used to compute the clusters com-
posed of labels so that the chosen cluster quality
metric is maximized as seen in Figure 8 and Fig-
ure 10. The respective SQL statement for creating
this graph is also shown in Figure 7.

5. Discussion and Conclusions

The best and the most efficient use case for the
hybrid Kinetica-Graph technology is the ability to
solve the nearly impossible OLAP joins between
large database tables. This problem is the most
troublesome in the industry since the structured
data and the stenciled join operations require huge
memory foot prints due to the need for squared di-
mension of these tables. Hence, the championing
idea is having the unstructured graph solves in the
inner section of the SQL queries to provide smaller
result tables for the outer enclosing OLAP joins
so that the joins could be done easily with much
smaller result tables against the large database ta-
bles in order to pull in the other necessary at-
tributes as the desired output. An example of this
type of hybrid querying approach is shown in Fig-
ure 11.
The 3-hop adjacency queries over distributed

graphs for a total of 4.3 billion edges take about
5-8 seconds due to ping-ponging between the graph
servers on the 6 partitions that are created using
random-sharding on edge ids. The query speed
is much improved using a non-partitioned single
graph within 1.2-1.8 seconds using the conven-
tional (old) key-value look-up labeling mechanism.

Figure 9: Distributed graphs ’expero.default graph’ over six
nodes of a hybrid Kinetica cluster (top), non-partitioned
graph ’expero.default graph’ on a single node (bottom) - A
total of 4.3 billion edges and 2.8 billion nodes with 34 edge
and 16 node labels. Each node and edge is associated with
one or more labels.

8

Figure 10: Louvain (left) and Recursive Spectral Bisection
(RSB) cluster partitioning (right) solvers applied over the
label graph (ontology graph); each node label is associated
with a cluster index. Both solvers are implemented in-house
and freely available in Kinetica-Graph under match/graph
endpoint.

However, using the proposed novel labeling data-
structure, not only we were able to fit the giant
graph within the physical memory limit of a 1TByte
node but also get the query time under a second
(400-700 miliseconds). If bigger graphs are needed,
a portion (up-to 90%) of the physical RAM could
have been used in ZRAM allocation with x4 com-
pression with a very acceptable trade-off in speed
within 20-40% slow-down considering the other al-
ternative as distributed. Nevertheless, much slower
distributed graph alternative is inescapable in or-
der to stay completely scalable to any graph size,
like reaching to peta scale size graphs, for exam-
ple. However, for practical purposes, this new and
novel labeling data-structure gives us the ability to
be the lowest (possibly) on the memory require-
ment so that we could entertain fast queries within
a single box up-to perhaps 20-40 billion graphs de-
pending on the RAM (and ZRAM) limits.

Another very important impact of this novel
data-structure is such that the amount of storage is
a constant fixed amount regardless of the variable
number of labels that can be tethered to the nodes
and edges - thanks to the in-place single linked lists

embedded in one fixed size vector of twice the size
of the number of nodes/edges. In other databases,
having a set of super nodes/edges where high num-
ber of labels associated with particular nodes/edges
can bring the operations to a halt or require very
skewed allocations and large memory foot-prints
due to expanding and shrinking number of asso-
ciations. This presents no issues with our labeling
framework particularly when there are label attach-
ments for the majority of the graph nodes/edges.
The required vector size is known and hence the
memory can be reserved even before attaching the
labels dynamically. Additional memory require-
ment for other data-structures such as the label
to tuple index map and FIFO vector for recycling
the tuple indexes explained in Section 3, is negli-
gible because even in the billion+ graphs there are
at most hundreds of distinct labels. The memory
required for the entire labeling framework, domi-
nantly the in-place single linked list is linearly scal-
able against the graph size as shown in Figure 12.

The future work on this novel labeling frame-
work would be developing efficient partitioning al-
gorithms possibly over the graph ontology (label
graph) generated automatically during the inges-
tion process from database tables into generating
the distributed graphs. We are also planning to
adopt hybrid queries i.e., graph results as input for
joins against large tables as our standard approach
and provide viable and acceptable SLAs for the
practical needs of our clients particularly in banking
and retail industries.

Acknowledgement

The authors would like to thank Expero, who
provided a descriptive graph data-set to simulate a
real world credit card risk scoring use case so that
we could improve Kinetica-Graph’s labeling frame-
work explained in this manuscript.

Notes on Contributors

Bilge Kaan Karamete is the lead technologist for the
Geospatial and Graph efforts at Kinetica. His research
interests include computational geometry/algorithm
development, unstructured mesh generation, parallel
graph solvers. He holds PhD in Engineering Sciences
from the Middle East Technical University, Ankara
Turkey, and post doctorate in Computational Sciences
from Rensselaer Polytechnic Institute, Troy New York.

9

Figure 11: Finds paths from source to target within N hops (n hop query) - source is always a known vertex, and the target
is usually a set of match criteria (e.g. may not be a single vertex or a node label). N can range from 1 to however high we
configure the UI to allow. Users usually want to go 3− 5 hops. In this example, the query aims to find party or street address
vertexes whose risk scores ≤ 15 and 10, respectively within 3 hops of the starting node. Note that the outer join operations
are using the small graph query output of only 20 path long (max ≈ 100 records) versus the 2.8 billion record original vertexes
table.

10

0.731
1.6910 (0.49Gb)

2.74100 (5.5Gb)

3.821000 million nodes (66Gb)

0 1 2 3 4

log(100 ∗memory)[Gb]

Figure 12: Scalable linear memory consumption of the la-
beling infrastructure vs graph size. The memory impact
of labeling datastructures for 1.2 billion node/edge graph
is roughly 100 GBytes.

Eli Glaser is VP of Engineering at Kinetica. He leads
the development teams concentrating in data analytics,
query capability and performance. Eli holds Master’s
in Electrical Engineering from The Johns Hopkins Uni-
versity, Baltimore Maryland.

6. Software avaliability

The labeling framework and data-structures written
as header only c++ code discussed in this manuscript
is publicly available in the github repository of kineti-
cadb/kinetica graph labels. Kinetica and Kinetica-
Graph is also freely available in Kinetica’s Developer
Edition at https://www.kinetica.com/try that the
use cases depicted in this manuscript can easily be repli-
cated by the readers.

References

References

[1] D. R. Musser, A. Saini, The STL Tutorial and Ref-
erence Guide: C++ Programming with the Standard
Template Library, Addison Wesley Longman Publish-
ing Co. USA, 1995.

[2] M. A. Weiss, Data Structures and Algorithm Analy-
sis in C++, Addison Wesley Longman Publishing Co.
Boston USA, 1998.

[3] D. Fernandes, J. Bernardino, Graph databases compar-
ison: Allegrograph, arangodb, infinitegraph, neo4j, and
orientdb., in: Data, 2018, pp. 373–380.

[4] J. Guia, V. G. Soares, J. Bernardino, Graph databases:
Neo4j analysis., in: ICEIS (1), 2017, pp. 351–356.

[5] A. Deutsch, Y. Xu, M. Wu, V. Lee, Tigergraph: A
native mpp graph database (2019). arXiv:1901.08248.

[6] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring
network structure, dynamics, and function using net-
workx, in: G. Varoquaux, T. Vaught, J. Millman (Eds.),
Proceedings of the 7th Python in Science Conference,
Pasadena, CA USA, 2008, pp. 11 – 15.

[7] R. Sedgewick, Left-leaning red-black trees, in: Left–
leaning Red-Black Trees, 2008, pp. 1–10.
URL https://api.semanticscholar.org/CorpusID:

199513342

[8] S. Sainz-Palacios, Flat combined red black trees (2019).
arXiv:1912.11417.

[9] T. Ozsari, A hash of hash functions (2003). arXiv:

cs/0310033.
[10] D. Köppl, Separate chaining meets compact hashing

(2019). arXiv:1905.00163.
[11] M. Thorup, Linear probing with 5-independent hashing

(2017). arXiv:1509.04549.
[12] D. E. Knuth, The Art of Computer Programming, Vol-

ume 1 (3rd Ed.): Fundamental Algorithms, Addison
Wesley Longman Publishing Co., Inc., USA, 1997.

[13] M. Leitner-Ankerl, Comprehensive c++ hashmap
benchmarks 2022, https://martin.ankerl.com/2022/

08/27/hashmap-bench-01, accessed: 2022-08-27.
[14] B. K. Karamete, L. Adhami, E. Glaser, A fixed storage

distributed graph database hybrid with at-scale olap
expression and i/o support of a relational db: Kinetica-
graph (2022). doi:10.48550/ARXIV.2201.02136.
URL https://arxiv.org/abs/2201.02136

[15] GraphViz, Graphviz, https://graphviz.gitlab.io/,
accessed: 2023-10-02.

[16] B. K. Karamete, R. Aubry, E. L. Mestreau, S. Dey,
A novel double link structure (dls) with applica-
tions to computational engineering and design, AIAA
Aerospace Sciences Meeting 54 (2016) 1301. doi:10.

2514/6.2016-1301.
[17] G. F. Oliveira, et all, Extending memory capacity in

consumer devices with emerging non-volatile memory:
An experimental study, CoRR abs/2111.02325. arXiv:
2111.02325.
URL https://arxiv.org/abs/2111.02325

[18] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefeb-
vre, Fast unfolding of communities in large networks,
Journal of Statistical Mechanics: Theory and Ex-
periment 2008 (10) (2008) P10008. doi:10.1088/

1742-5468/2008/10/p10008.
[19] Y. Hu, R. J. Blake, Numerical experiences with parti-

tioning of unstructured meshes, Parallel Computing 20
(1994) 815–829.

11

http://arxiv.org/abs/1901.08248
https://api.semanticscholar.org/CorpusID:199513342
https://api.semanticscholar.org/CorpusID:199513342
https://api.semanticscholar.org/CorpusID:199513342
http://arxiv.org/abs/1912.11417
http://arxiv.org/abs/cs/0310033
http://arxiv.org/abs/cs/0310033
http://arxiv.org/abs/1905.00163
http://arxiv.org/abs/1509.04549
https://martin.ankerl.com/2022/08/27/hashmap-bench-01
https://martin.ankerl.com/2022/08/27/hashmap-bench-01
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
http://dx.doi.org/10.48550/ARXIV.2201.02136
https://arxiv.org/abs/2201.02136
https://graphviz.gitlab.io/
http://dx.doi.org/10.2514/6.2016-1301
http://dx.doi.org/10.2514/6.2016-1301
https://arxiv.org/abs/2111.02325
https://arxiv.org/abs/2111.02325
https://arxiv.org/abs/2111.02325
http://arxiv.org/abs/2111.02325
http://arxiv.org/abs/2111.02325
https://arxiv.org/abs/2111.02325
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008

	Introduction
	Sample Input
	New Data Structure
	In-place single linked list

	Single and Distributed modes
	Discussion and Conclusions
	Software avaliability

