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Abstract

A distributed graph database architecture that co-exists with the distributed relational DB for I/O and at-
scale OLAP expression support with hundreds of PostGIS compatible geometry functions will be discussed in
this article. The uniqueness of this implementation stems mainly from its double link topology structure for
its fixed storage characteristics independent from the variance in node-to-edge connections. Another note-
worthy contribution of this implementation is its non-blocking client-server communication architecture
among its distributed graph servers. A non-bottlenecking partitioning scheme based on duplication of nodes
is also implemented ensuring minimal communications using distributed filtering on geo-spatial, random
and explicit sharding choices. Finally, an e�cient re-balancing algorithm followed by a distributed shortest
path solver will be demonstrated with examples from both geo-spatial and social networks.
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1. Introduction

The tabular form of the data in relational
databases has been the work horse of the transac-
tional organizations for many decades. Even today,
it is arguably the most preferred method of storing
and updating the data and running analytic queries
over it. The table format of relational databases
(relational DBs) constituted as rows and columns
in this sense, much referred to as structured data,
are used to compare and join with other tables by
matching the records over primary and foreign keys,
the unique identifiers across rows. The tabular na-
ture of the data allowed the partitioning of the data
in fixed sized fragments often depicted and known
as columnar chunk format. Chunked data in colum-
nar order is easily distributed across nodes of a clus-
ter, or over the resources of a cloud provisioning as
of late, and conveniently cast to formulate the ma-
trix based join operations to be performed in par-
allel. In other words, both process and data paral-
lelism is achieved by slicing the structured data as
columnar chunks.[1, 2, 3, 4, 5, 6].

⇤Corresponding author: B. Kaan Karamete, kkaram-
ete@kinetica.com

During the course of the evolution in relational
DB technology, various parallel formulations of the
matrix based join and filter operations over the
stenciled chunked data have been implemented by
many relational DB vendors.[6, 7, 8]. The speed of
computing queries in this manner, is often based on
how e↵ective the data is pulled from di↵erent stor-
age media. Over the decades since 1970s, there has
been a gradual increase of transferring data from
disk to memory where the computation of analytic
queries occur. The flexibility (elasticity) in adjust-
ing the amount of the data transferring from disk,
over to memory (tiering) for the duration of com-
putation is the ultimate success criteria considering
the concurrent nature of the queries.

Individual records (row-wise) can be related to
the other records via their columnar values in struc-
tured data. Hence, the comparison across these
columnar content from di↵erent tables (blobs) is
a squared relation-ship and therefore inevitably
global. There are, however, ways to reduce the
global aspect to a more local or narrower relation-
ship among records. Data can be partitioned over
a range (window-functions) so that only the por-
tion within the range is used for generating stencils
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instead of the entirety of the table. Data can also
be hashed in a way to skip (chunk-skipping) certain
sections for generating stencils only where it mat-
ters. However, both of these mitigation techniques
require prior knowledge on the content of the data,
so that certain partitioning and/or hashing (shard-
ing) schemes can be prescribed in storing the data
that will also have a huge impact on the speed of
processing, say, when it is required to join with the
other tables [1, 5, 6, 9].

Unstructured data, on the other hand, enables
traversing the queries in the closure of nodal re-
lations. Nodes and pairwise connected nodes,
i.e., edges can also be created from the struc-
tured data[6, 10], hence, establishing how the
nodes are connected gives us the ability to jump
across the square nature of matrix based table
of records. Generally speaking, graphs are gen-
erated from these node to edge topology connec-
tions [6, 11, 12]. However, this has an important
issue in that the other existing but unused columns
should be associated with the nodes and edges as
attributes. Mapping the attribute rich structured
data forms to the data concise unstructured nodes
and edges of a graph is usually done by using other
columns as associative links as labels (See Figure 3).
As in any translation, this would either result in
loss of data due to the ad-hoc choice of keeping
what should be on the graph or unnecessary data
duplication[10, 11, 12, 13]. Our graph architecture
eliminates this problem by keeping the attribute
rich columns at relational DB and still be able to do
restrictions during graph traversals by filter expres-
sions using the already distributed parallel OLAP
engine.

Another major issue, which is a common prob-
lem in any mesh-like structure is the dynamically
changing node to edge connections, i.e., there can
be varying number of edges emanating from each
node, and in a dynamic table update scenario where
new records can be inserted or removed, these
growing and shrinking edges to an existing node
can result in de-fragmentation and reallocation is-
sues, both of which amount to excessive and often
prohibitive storage requirements. Therefore, de-
sign of the graph topology in tackling this issue is
one of the most essential in the e�ciency of any
graph database and this will be addressed in Sec-
tion 2. Unlike the other graph engines, such as
Tiger and Neo4j available today [11, 12], that have
either the explicit data duplication via file I/O or
hooks streaming data from third party databases

like Postgres [14], Kinetica-Graph co-exists with the
distributed Kinetica-DB as a hybrid graph data-
structure. In Section 3, the details of this hybrid
design will be discussed to demonstrate the e↵ec-
tiveness of combining the parallel OLAP computa-
tion engine using a network agnostic grammar.

Using multiple graph servers (processors) on a
cluster of machines has two benefits; it enables pro-
cessing the tasks faster by creating identical copies
of the graph onto each server and dividing the input
accordingly among the servers (replicated) and sec-
ondly it can distribute big graphs into manageable
sized sub-graphs in each server (partitioned). These
two benefits, either by replicating or partitioning
the graph both require non-bottlenecking communi-
cations not only among graph servers but also with
the co-existing relational DB. Distributed graph
servers with non-blocking communication will be
discussed in Section 4 using an e�cient socket com-
munication library ZeroMQ [15].

Partitioning of graphs in Kinetica is designed to
minimize the communications between its graph
servers sharing the portions of a big graph as parti-
tioned sub-graphs with only interface nodes being
duplicated so that no intra-processor book keeping
would be required for simplicity. There are many
e�cient parallel partitioning libraries in the litera-
ture that set-up and use data in their own format
and communication patterns such as Zoltan and
Parmetis [16, 17]. Kinetica has chosen a more di-
rect approach due to the fact that its data is already
distributed in its hybrid relational DB. Basic parti-
tioning filters are implemented using OLAP expres-
sions that employ geometric, random and user pro-
vided external partitioning criteria, followed by a
novel re-balancing algorithm that uses the iso-cost
levels of an unbalanced distributed shortest path
solve, which will be discussed in Section 5. finally,
a distributed shortest path solving algorithm with
examples from both geo-spatial and social networks
will be explained and demonstrated in Section 6, re-
spectively.

2. Graph topology

Graph storage in Kinetica is a fixed amount in-
dependent from how dense or variant the node-
to-edge connections are. For a billion node graph
where each node goes to every other, the conven-
tional graph data structures require hundred mil-
lion GBytes (formidable) storage whereas Kinet-
ica Graph requires only ten GBytes. Key di↵er-
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entiator of Kinetica Graph DB is its e�cient data
representation supporting a very large number of
edges/nodes that has no memory degradation un-
der dynamic updates [18, 19]. Our optimized par-
allel graph solvers are built on top of this repre-
sentation. Even a single node graph server can ac-
commodate multi-billion edge graphs with dynamic
upserts streaming from DB tables easily with fixed
storage characteristics that scales linearly with the
graph size. One of the conventional graph edge data
structures is the use of CSR format[20, 21], which
is a static data structure as it keeps the start and
the end node indexes of each edge in just one vec-
tor. However, either deleting an edge or adding a
new one requires this vector to be updated resulting
in huge reallocation blocks to be shifted, in order
to insert or take out the relevant sections in the
CSR vector. There is a rather quick fix for solving
this issue by tombing (tagging instead of deleting)
the deleted edges by simply holding an extra bit-
wise information per edge, however, this approach
is only good for the entity deletions, and at some
point it would require a global compactification pro-
cess on the entire data structure. Nevertheless, as
long as there are no modifications, static CSR for-
mat has also its advantages, since node to edge it-
erations almost always remain within ranges of the
fast L1 and L2 caches [22].

Our graph data structure is elegantly solving the
issue of dynamic sizing of node-to-edge connections
by linking edges to each other through the two
nodes of each edge via the previous and the next
edge links. Each node of an edge, has a previ-
ous and next edge indexes, so that we can un-
ravel the edges of a node starting from an already
cached edge index at the same node. This data
structure, namely, double link structure, DLS, de-
vised by Karamete [18, 23] on mesh based struc-
tures e↵ectively applied on the graph topology con-
tainers at Kinetica. The novel idea is illustrated
in Figure 1. The amount of storage is a pre-
computed fixed amount of six times the number of
edges; two edge links per node pair of an edge, i.e.,
ei = 2(nodes) + 2(previous) + 2(next). The only
downside of this choice is that iterating the edges
of a node requires jumping along the one edge-node
vector which can lead to L1 and L2 cache misses if
movement range widens. One easy solution to this
issue is the conversion to a CSR format temporarily
if/when the graph data is static and small, though
without the conversion, the delay on the speed for
a typical shortest path solve is tolerably low (less

than ⇡ 10%). We have also adopted a similar
tombing strategy in our DLS implementation by
reusing the ids of the deleted entities to further re-
duce memory consumption for the newly inserted
nodes/edges as depicted in Figure 2.

3. Hybrid graph grammar

Kinetica Graph is designed and implemented
from scratch driven via an extend-able and intu-
itive set of robust graph grammar defined as com-
ponents and identifiers as annotations to DB table
columns, as well as string based node and edge LA-
BELS. The key idea behind having a network ag-
nostic graph grammar is that nodes, edges and at-
tributes for labels can all be transformed into graph
topologies and associative maps in a unified manner
regardless of the network type. The components are
defined as NODES, EDGES, WEIGHTS, and RE-
STRICTIONS as shown in Figure 4. A set of ad-
hoc identifiers is created for each component, that
can be constructed by more than one manner via a
set of pre-defined tuples of these identifier combina-
tions. For instance, a component identifier combi-
nation set of (EDGE ID, EDGE NODE1 NAME,
EDGE NODE2 NAME) can be used to construct
graph edges by associating each of these identifiers
with a DB table column such as seen in Table 3.

The geographical Lon/Lat coordinates in terms
of WKT Points and LineStrings can directly be con-
sumed by the geo-graph creation end-point utilizing
an uniform bin hashing technique with a user con-
trolled merge tolerance (graph decimation). All the
heavy lifting is done by the graph server, and the
only user requirement is to annotate table columns
with the appropriate identifier combinations. See
Tables 1, and 2, for select number of node and edge
component identifiers, respectively.

Table 1: Selected Node Component Identifiers

NODE ID node’s integer id.

NODE X node’s longitude or X.

NODE Y node’s latitude or Y.

NODE NAME node’s name.

NODE WKPOINT node’s wktpoint
’POINT(-77.3808 38.7567)’

NODE LABEL node’s label.

Kinetica-Graph is composed of just four generic
and intuitive end-point schema APIs, namely, Cre-
ate, Solve, Query, and Match. Each endpoint ex-
pects a particular set of components via identifier
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Figure 1: Double Link Graph Edge Topology: each edge record has six values; a pair of nodes, and their corresponding previous
and next edge indexes - Traversal of finding upward edge links to vertex 1: Vertex 1 keeps a cached edge id of 3, traversal goes
to edge vector at index 3, finds the vertex 1, and iterates to its corresponding previous edge index of 2, and this iteration is
repeated until hitting null entry (zero index). The result is edges 1, 2, 3 that are adjacent to vertex 1

Figure 2: Recycling edge and node ids, when deletion hap-
pens; the recycled ids are used for the new node and edge
insertions, hence there is no wasted space in the double link
topology vectors: Vertex 3 is deleted and edge indexes, 2, 4, 6
are stored in a queue for reuse.

Figure 3: A typical graph layout with labels and scalar
weights on nodes and edges.

Figure 4: Kinetica-Graph network elements: components as
nodes, edges, weights and restrictions, depicted via a set of
ad-hoc network agnostic graph grammar identifiers, consti-
tuting the network combined with solvers.

combinations annotated with a DB table schema or
constant expressions. Solve Graph endpoint con-
sists of low-level generic network solvers such as
Dijkstra (shortest path), traveling salesman (with
heuristics), back-haul routing, page rank, Markov
chain probability, centrality between-ness, close-
ness, inverse shortest path, all paths, Eulerian
paths, etc. whereas the Match Graph uses more
complex, specific purpose solvers that make use
of combinations of generic solvers, such as Mul-
tiple Supply Demand Chain Optimization, Map
Matching using Hidden Markov Chains, Origin-
Destination time constrained routing, etc., as seen
in Figure 5. The end-point schemas are defined
and designed in JSON format, and the implemen-
tation is done via Apache Avro serialization en-
coding into a C++ header representation. Var-
ious API forms of the endpoints are then cre-
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Table 2: Selected Edge Component Identifiers

EDGE ID edge’s integer id

EDGE NODE1 ID edge’s 1st node id

EDGE NODE2 ID edge’s 2nd node id

EDGE NODE1 NAME edge’s 1st node name

EDGE NODE2 NAME edge’s 2nd node name

EDGE DIRECTION edge’s direction

EDGE LABEL edge’s label

EDGE WEIGHT VALUESPECIFIED edge’s weight

EDGE WKTLINE edge’s wktlinestring

Table 3: Selected Edge Identifier Combinations

EDGE ID, EDGE NODE1 ID, EDGE NODE2 ID

EDGE ID, EDGE NODE1 ID, EDGE NODE2 ID,
EDGE DIRECTION

EDGE ID, EDGE NODE1 NAME, EDGE NODE2 NAME

EDGE ID, EDGE NODE1 WKTPOINT,
EDGE NODE2 WKTPOINT

EDGE ID, EDGE WKTLINE

EDGE ID, EDGE WKTLINE, EDGE DIRECTION

EDGE NODE1 ID, EDGE NODE2 ID

EDGE NODE1 NAME, EDGE NODE2 NAME

EDGE NODE1 NAME, EDGE NODE2 NAME, EDGE LABEL

EDGE NODE1 WKTPOINT, EDGE NODE2 WKTPOINT

EDGE WKTLINE

EDGE WKTLINE, EDGE DIRECTION

ated in R/C++/Java/JavaScript/Python language
bindings [6]. The bindings are usually wrapped
by the endpoints’ REST calls via HTTP requests
as can be seen, e.g., in Create Graph endpoint in
Figure 6. We have also provided the SQL equiv-
alents of graph endpoints, in an intuitive manner
as compliant as possible to the SQL standards in a
Jupyter notebook like environment called Kinetica-
Workbench, so that data analysts accustomed using
SQL commands can also streamline graph calls into
their ingestion, analysis, aggregation SQL pipelines
with ease as shown in Figure 7. Graph requests
can also be run via Kinetica-Graph-UI in which
the identifiers are listed in the pull down with
auto-completion for database schemas and graphi-
cal point picking over the graph network as depicted
in Figure 9.

Kinetica-DB is also able to run many to many
queries at-scale. Query syntax is di↵erent but
functionally compliant to cypher queries, in that
one can have query-time restrictions akin to
the ‘WHERE’ clause very easily and flexible in
Kinetica-DB as shown in Figure 8 where multiple

Figure 5: Kinetica-Graph Solvers: solvers exposed via
solve/graph, match/graph, and query/graph apis are de-
picted in pale gray, pink and cyan, respectively.

Figure 6: Kinetica-Graph Create/Graph Endpoint. Graph
nodes are created from WKT point coordinates, and associ-
ated with labels, ’IN CAPITOL’ or ’OUT CAPITOL’ based
on the result of the PostGres ST geometry distance func-
tion that measures the geodesic distance from the GPS lo-
cation of the US Capitol, if the distance is less than 1km or
more, respectively. Graph edges are created from the WKT-
linestrings that match with the existing nodes within the
’merge tolerance’ of 1 meter (0.00001 in degrees approx.)

Figure 7: Kinetica-Graph Create/Graph Endpoint in SQL
syntax, equivalent of the RESTFUL request depicted in Fig-
ure 6.
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paths are found from ‘FEMALE’ nodes to persons
whose interests are in playing ‘chess’ (node lables
attached at the time of Create-Graph) while re-
stricting on edges with the help of the OLAP func-
tions provided by Kinetica-DB.

4. Server-Client-Server architecture

Kinetica-Graph Server(s) are implemented to
communicate with the Kinetica-DB via its C++
APIs using pull/push pattern of ZMQ socket com-
munication [15] for expression and I/O support of
the database as depicted in Figure 10. Graph tasks
are encoded into byte stream using Avro [24] serial-
ization. Graph-Client is the interface inside Core-
DB pushing user requests to the server by adding
extra server side parameters. Graph-Servers pull
from the socket channel and decode the messages
back to their original specific tasks in a threaded
do-run loop so that the incoming tasks had been
processed based on their priority order and never
get lost. Graph-Servers also provide the proper
locking mechanism on the graph network objects
via Graph-Interface. The Task-Processor of each
Graph-Server runs the concurrent tasks in their own
queue by waiting on each other properly (See Fig-
ure 10).

This communication style ensures the tasks to be
processed in the queue in a non-blocking fashion.
For example, if a Solve-Graph is requested while the
Modify-Graph is updating the graph-edge topology,
solve has to wait till the graph finishes updating
due to the locks on the graph entities. However,
as soon as the scoped graph locks are lifted, many
solves on the same network can run concurrently as
they operate on the same constant graph object in
di↵erent threads.

Similar but more complex pattern of socket
communication architecture is devised for dis-
tributed solves, as shown in Figure 11 where the
Graph-Client orchestrates communication from/to
many Graph-Servers that message over dedicated
read/write ports in a sequential loop. This type of
many-to-one-to-many communication pattern en-
sures the abort-able conditions to be observed in
a coherent fashion in which the conditions would
not be raced among the Graph-Servers.

A typical distributed solve relies on the fact that
the costs at the duplicated nodes (will be discussed
in Section 5 and 6) will converge after iterations on
many servers. For example, if there is an update
on the cost of a duplicated node reported by one

of the servers, that server sends the message to the
Graph-Client, and the Graph-Client sends it to the
port that every other server reads from and depend-
ing on the closure of the duplicated node, the cost
value could be used as the trigger (new front) on
that server’s own solve, and so and so forth. This
process of servers updating themselves continually
repeats until convergence is reached. We will cover
the algorithm of the distributed solves in more de-
tail in Section 6.

5. Distributed graphs and re-balancing algo-

rithm

5.1. Replicated and Partitioned Graphs

Graphs can be replicated or partitioned among
many graph servers. Each graph server is a sep-
arate executable and can be instructed to be in-
stalled on a rank (node) where its persist (serialized
byte dump + metadata) can also reside separately
as shown in Figure 14. Replicated graphs are iden-
tical copies of the same graph in each server, and
any solve or query input is split among them to re-
duce the input size per server, so that the speed
of computations could be increased at-scale. How-
ever, when the graph size is of concern, partitioning
the graph into sub-graphs is the only other alterna-
tive. We have devised a topology partitioning data
model such that every graph edge can belong to
only one server, and topology connections is con-
tinued across servers via nodes that are duplicated
at the inter-server junctions as shown in Figure 12.

5.2. Internal and External Partitioning

There are both internal (implicit) and exter-
nal (explicit) partitioning schemes available in
Kinetica-Graph. Internal partitioning can be done
in three di↵erent flavors depending on the type of
the graph, that can be deduced by the edge iden-
tifiers in the Create-Graph request call, namely, id
range, geometric bounding box range or random
sharding as shown in Figure 15. There is no guar-
antee, however, that the partitions created in any
of these three ways would have the least number
of duplicated nodes, as it is one good indicator for
the e↵ectiveness of the partition. We can specu-
late that the best partitions are defined to have
minimum inter-communications to carry out a dis-
tributed task with least number of iterations, hence
total number of duplicated nodes over the size of
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Figure 8: Query-Graph SQL endpoint with OLAP expression support for applying restrictions during many-to-many queries.
Column Knows.since that is not captured by the graph unlike columns Knows.name1, and Knows.name2, can still be accessed
via Kinetica-DB in applying traversal restrictions: Many-to-many query shown in top left finds all the paths from ‘Susan’ and
‘Jane’ nodes that are labeled ‘FEMALE, to target nodes that are labeled ‘chess’ within three hops. Restrictions applied on the
edges whose ‘Person’ nodes knows each other since 2002 with the help of ‘IF’ OLAP function; four paths are found by skipping
the restricted edge shown in red cross on right, two from ‘Susan’ and two from ‘Jane’ shown in the table interest query in blue
and orange paths, respectively (bottom left).

Figure 9: Graph requests can also be run via Kinetica-Graph-UI in which the identifiers are listed in the pull down with
auto-completion for database schemas and graphical point picking capability over the graph network. (left) Solve-Graph UI
widgets with ability to populate the multiple routing (travelling salesman) stop location by graphically picking over Jakarta road
network. (right) The Jakarta road network graph and picked coordinates for Solve-Graph. (bottom) The result of Solve-Graph
depicting optimal round-trip routing involving many stops across Jakarta.
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Figure 10: Client-Server hybrid architecture of Kinetica-Graph with Kinetica-DB using ZMQ and C++ Apis from Kinetica-DB

Figure 11: Server-Client-Server ZMQ communication for dis-
tributed solves

the graph is considered to be a good score for e�-
cient partitions. Any arbitrary partition scheme by
the user can easily be applied by imposing explicit
partitioning schemes using specific identifiers when
creating the graph such as EDGE PARTITION,
and NODE PARTITION BOUNDARY. For parti-
tioned graphs, Create-Graph response is a set of
partitioned graphs (same name) on each server and
the partitioning score, reported as the aggregated
sum of the duplicated nodes.

The clustering of the partitions has a huge impact
on the speed of the distributed solves and queries
since scalar values of the analytics has to be trans-
ferred across adjacent partitions many times for
convergence. If the solve or query graph traversals
need to jump back and forth across partitions fre-
quently due to inter-mingling of the partitions with
poor clustering characteristics, it would take many
more iterations to converge as seen in Figure 17 (b)
that shows the DC metropolitan area road network

Figure 12: Internal (implicit) partitioning algorithm ensures
that every edge belongs to only one partition: DC metropoli-
tan area partitioned into four servers (top), blue edge belongs
to Part i since i < j, and the red node is set as a duplicated
node by each graph server running server side Create-Graph
requests concurrently (bottom), property graph constructed
using external (explicit) partitioning by edges linking words;
duplicated nodes as ’data’, ’that’ and ’proud’ shown within
red rectangles (bottom).
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Figure 13: Create-Graph request invoking Id-range internal
scheme for partitioned graphs over four servers specified in
the options.

graph created using node ids by the Create-Graph
request depicted in Figure 13. In order to visually
inspect the partitions, we have purposefully asso-
ciated the node ids with spatial coordinates, but
otherwise, the graph is merely constructed from in-
teger pairs of node ids. Each edge in the picture is
colored based on the partition that is calculated by
the id-range evenly distributed over the number of
servers. Hence, this type of partitioning results in
highly interlaced partitions, with very poor cluster-
ing that crucially needs a balancing algorithm to
improve clustering which will be described in the
next Section 5.3.

Before moving on to the balancing algorithm, it is
worth noting how a slightly more e�cient geometric
bounding box partitioning algorithm is envisaged
as one of the other implicit and distributed parti-
tioning heuristics summarized in Figure 16. Basi-
cally, the geometric extent of the graph is computed
using the distributed OLAP function, namely, Ag-
gregateMinMaxGeometry and this bounding box is
further divided into n ⇥ m lattices along x and y
among multiple graph servers in an ad-hoc manner.
Each graph server then executes a set of internal
Create-Graph calls by running over the view gener-
ated by another distributed OLAP filtering whose
expression consists of the PostGres ST intersects
function to peel o↵ the corresponding quadrant
from the input. However, this filtering expression is
still not enough to create the final non-overlapping
partitioning since the geo-spatial polygon intersec-
tion of the graph network by a box results in edges
that are straddling the lattice boundaries of adja-
cent servers. Therefore, an additional step is re-
quired to ensure that every graph edge belongs to

Figure 14: Distributed Graphs - Two flavors exist: replicated
or partitioned. Replicated graphs are identical copies of the
same graph in each server and the partitioned graphs are
sub-graphs in each server linked via the duplicated nodes.

only one partition (server) in a consistent manner
comparing the lexicographical order of the server
ids of its nodes as depicted in Figure 16.

5.3. Balancing partitions

The aim of balancing the partitions is to divide
graph equally with the least number of duplicated
nodes along inter-server boundaries. This is a non-
deterministic optimization problem and becomes
even harder when the partitioning should be done
in a distributed manner without bottle-necks. We
have devised a clustering algorithm ensuring equal
division with ’reasonably’ minimal total number of
duplicated nodes using the results of a distributed
shortest path solver over the unbalanced partitions.
Here are the steps of the balancing algorithm:

- Step 1. Distributed shortest path solve without
path aggregation from a chosen source (default
source node can be overridden) to all the nodes
in the graph as targets over the unbalanced
partitioned graphs.

- Step 2. Write out the graph nodes with solved
cost values at each record into a nodes table,
and graph edges with node ids, as edges table.
Ensure all the node and edge labels along with
other graph attributes are preserved in these
tables as additional columns.

9



Figure 15: Various distributed internal partitioning filters; the primary edge table(s) is processed to find the global aggregated
min/max ids (Id-Filter) or min/max wkt bounding box (Geo-Filter) parameters followed by the distributed OLAP filtering
based on the graph type spawned at each graph server. Sub-graph edges in each partition is then created from these views.
Another internal partitioning scheme (Random-shard) is the random distribution on string based social graph edge nodes, in
which OLAP based MOD and HASH functions are employed in the filter expression for creating the respective views for each
graph server.

Figure 16: Complete Partitioning algorithm using GEO filters: Graph-Client receives the partitioned Create-Graph request
and determine that the edges are created from WKT geometry columns and employs distributed AggregateMinMax OLAP call
to extract the global bounding box coordinates. Server side Create-Graph calls are rectified and sent to each Graph-Server so
that they themselves can run distributed OLAP filtering to create views within their sub bounding boxes via the ST intersect
geometry function. Edges are created from these views by further analyzing if both nodes of an edge fall within the bounding
box or otherwise, the outside node is set to be a duplicated node if it has a higher rank (server-id) that that of the partition.
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- Step 3. Renumber node ids of the edges table
using ascending sort (distributed merge sort)
of the cost from the nodes table.

- Step 4. Recreate partitioned graph from the
edge node identifiers that use the node ids
computed in previous stage and use id range
implicit partitioning to generate the balanced
partitions. Create-Graph endpoint using the
’recreate’ option automatically swaps unbal-
anced graphs, with the balanced partitions.

The results of clustering after balancing can be
seen on the color codes of the edges in the partitions
in Figure 17.(d). The improvement is markedly vis-
ible when compared to the interlaced colors (par-
titions) in the unbalanced graphs shown in Fig-
ure 17.(b) where clustering is very poor for the
DC road network graph. Node ids are renumbered
based on the ascending cost values from the results
of the distributed shortest path solve (Dijkstra) de-
picted in Figure 17.(c).

The impact of balancing is huge on the speed of
the distributed solves and queries. The comparison
numbers will be given at the end of Section 6 after
the explanation of the distributed solver algorithm
for completeness. Though, based on our findings
that we gathered from our extensive testing, we can
confidently state that the di↵erence is almost two
orders of magnitude in the solution speed, i.e., the
solver over balanced partitions runs approximately
100 times faster than the unbalanced (random) par-
titions.

6. Distributed solver

We have opted a priority queue implementation
for our version of the Dijkstra solver which seems to
supersede parallel queue implementations [19, 25].
In general, the Dijkstra Condition (DC) on each
node vi can be specified by Equation (1) which
states that the cost di can not be greater than the
minimum of the cost of any incoming nodes con-
nected to vi via the edge’s weight wij . The DC
condition is satisfied in a breadth first search man-
ner by the Dijkstra-D kernel originated from the
source (start) node and terminated at the destina-
tion (end) node. The modification of DC for the
distributed graph case, is simply the update of the
cost values di at the duplicated nodes among adja-
cent Graph-Servers Gk (partitions) via an iterative
process as depicted in Equation 2.

di = (dj + wij) | wij : vj 7! vi,2 N(vi)

Dstart,end = min
vi2G(V,E)|end

start

⇣
di
⌘

(1)

dnewi |Gj= min(di |Gj , di |Gk) : di 2 Gk \Gj (2)

First, the partition that contains the source node
is located to start the process. The solver of the par-
tition receives the front pair (di, 0) and populates
its heap structure with the front and solves towards
all the other nodes in the partition as depicted in
Figure 18.(top). The rest of the unvisited nodes in
the partitions have the cost value at infinity. Other
Graph-Servers are waiting to check and update if
any of their duplicated nodes to have a lower cost
from the adjacent partitions, concurrently. After
the initial solve is finished where the source node is
contained, the costs can spread to replace the infi-
nite costs and thereby trigger the solves at adjacent
partitions. Updated costs at the duplicated nodes
are paired to populate the new fronts of the ad-
jacent solvers as shown in Figure 18.(mid). The
process of concurrent runs at each Graph-Server
continues until no more cost updates are found
which means that the Dijkstra condition is satis-
fied globally across all partitions. Finally, short-
est paths found by aggregating that starts from
the target back to the source and stitching through
the duplicated nodes using the result of the Dijk-
stra solver at each Graph-Server. This back track-
ing process of the path aggregation algorithm stops
when it reaches the source node as depicted in Fig-
ure 17.(bottom).

The paths from the same source to many tar-
gets can also be found as shown in Figure 19 in
which the metropolitan area of DC road network is
divided by four Graph-Servers using the bounding
box partitioning scheme, and first hundred targets
in the upper right quadrant is chosen as the tar-
get nodes. The shortest paths emanating from the
source located in lower left to all the targets in the
upper right partition can also be seen in Figure 19.
One of these paths can be investigated to see how
the same server is visited more than once in ag-
gregating the path over the scalar cost field where
Dijkstra condition is satisfied across the partitions
in Figure 20. The propagation of this scalar cost
field during concurrent iterations over the Graph-
Servers can be seen in Figure 21 as the red colored
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Figure 17: Balancing the partitions: (left) graph topology, unbalanced partitions by id-range internal partitioning (colors
indicate partitions), contours of the sssp solve results over unbalanced partitions, balancing using the iso-levels of the solve
as a separator such that each partition would have equal number of edges (right). The clustering of the partitions in colors
can easily be seen to have improved between the second image from left (unbalanced partitions) to the image on the far right
(balanced partitions).

Figure 18: Steps of a priority queue based distributed shortest path solver algorithm: (top left) Four partitions with duplicated
nodes depicted in red, (top right) Only the left most partition’s Dijkstra solver works triggered from the source being at zero
and all other nodal cost values at infinity, (mid left) The nodal cost values gets transferred to the adjacent partitions at the
duplicated nodes if a lesser value is found, (mid right) priority queue solver of the adjacent partition gets initiated from the
updated node and cost pair set, (bottom left) Cost values at the duplicated nodes gets exchanged whichever value is smaller
from adjacent partitions triggering yet another solve wherever the update happens, (bottom right) There is no more updates
needed which means convergence is reached, the path is then aggregated starting from the target and revisiting partitions until
the source is hit depicted as the blue line.
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Figure 19: The shortest paths from single source to all tar-
gets over four partitions. Paths may go in and out of parti-
tions. The shown paths in black are just the first 100 desti-
nations in the third quadrant (partition).

nodes, signifying the highest distance (or time) cost
move away as the cost gets corrected and spreads
to distant quadrants (partitions). The e↵ect of the
balancing algorithm explained in the previous Sec-
tion 5 versus the unbalanced random sharding on
the speed of the solve is markedly di↵erent. If the
graph is created from the node ids (id range) as de-
picted in the Create-Graph call of Figure 13, ver-
sus balancing partitions by Repartition-Graph call
whose steps are summarized in Section 5, the dif-
ference in solver performance is two orders of mag-
nitude both in the total number of iterations and
total time to convergence as tabulated in Figure 22.
In the geo-graphs particularly, the performance dif-
ference between balanced versus bounding box par-
tition is not that much, however, balanced solve is
still twice as fast if not hundred times as compared
to the cases of id-range or random partitioning in
social graphs.

Another example of running distributed short-
est path solver over the four partitions of the great
lakes area is shown in Figure 23. The time tracer
analysis across four servers depicts how servers run
concurrently while updating cost values across the
duplicated nodes. Note that the path aggregation
process is sequential and may not be insignificant
compared to the total solve time. Distributed solves
can be sped up using more partitions as shown in
Figure 24 based on the availability of the resources.

Figure 20: Aggregating the shortest path by back tracking;
partition 3 is visited twice from the source located at the
lower left partition 0

7. Results and Conclusions

The success of Kinetica-Graph is built on top
of its fixed memory topology data-structure frame-
work that has no memory degradation in dynamic
graph updates as discussed in Section 2. We also
have adopted a novel network agnostic graph gram-
mar and wrapped it with SQL syntax functionally
compliant to Cypher queries, discussed in detail in
Section 3. The integration of graph operations with
the OLAP engine using the SQL syntax is our uni-
fied solution and a game changer.

Geospatial or property (social) graphs can easily
be generated using our intuitive endpoints that can
be used in R/C++/Java/JavaScript/Python API
forms or in SQL syntax. Road network graphs
are naturally geo based, however, it is completely
possible to generate graphs over nano dimensional
scales as well in Kinetica-Graph. Turn penalties
can be added on demand, i.e., angle based turns
can be plugged into an existing graph topology via
a novel concept called dummy edges/nodes that is
completely hidden to the user. However, adding
these dummy entities enable us to solve network
path problems without having to embed the combi-
natorial ‘if conditions’ inside the solver algorithms.
Hence this process is completely segregated from
the solver design, which makes our solvers lean and
e�cient. It is also possible to add local penalties
and restrictions with specific identifiers that can be
set either at graph creation or solve time as depicted
in Figure 25.
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Figure 21: The propagation of the cost in the first three iterations across partitions in color codes from left to right; each
iteration of the distributed solve updates and advances the cost field to a more converged state. Note that the distant nodes
move away further in red color from left to right as the iterations advance.

Figure 22: SSSP run to all targets with path aggregation
for balanced vs unbalanced graph comparison on the total
number of iterations and time till convergence using four
Graph-servers.

Multiple node and edge labels can be attached
e�ciently without any limits over the property
graphs and utilized in solve and query endpoints.
Graphs can in general be single, replicated or par-
titioned in Kinetica. Replicated and partitioned
graphs use multiple graph servers in distributed
cluster architectures using the e�cient Pull/Push
ZeroMQ [15] inter-processor communication pat-
tern as discussed in Section 4. Extensive set of par-
allel at-scale graph solvers are implemented in Ki-
netica that mostly use robust amd proven OpenMP
technology [26].

Map matching solver using hidden Markov chains
deserves a special mention among many note-
worthy Kinetica-Graph solvers since its success
stems mainly from graph database’s e�cient dou-
bly link topology structure explained in Section 2.
This patented in-house capability determines the

Figure 23: Distributed shortest path solves across Great
Lakes with 4 servers using bounding box range subdivision
(top), The shortest paths from one source to five destinations
(mid), the distributed solver’s tracer in time analysis, where
in each cycle there is either one or more servers concurrently
run and exchange cost values across duplicated nodes and
path aggregation using the back tracing starting from the
targets (bottom).

14



Figure 24: Great lakes area can be divided into more parti-
tions to speed up the distributed solves based on the avail-
ability of the resources. Graph is partitioned based on the
bounding box division into 3⇥ 7 partitions.

Figure 25: Adding automatic turn restrictions via dummy
nodes/edges (top). Local turn penalties can be added
via RESTRICTION graph grammar identifiers over dummy
edges (bootm).

Figure 26: Noise in the GPS samples is quite visible by the
void red circles zoomed in on a portion of the Microsoft’s
Seattle data set. The Map matching algorithm finds the
best route by screening possible path sequences under the
constraints of the graph road network topology. [19]

Figure 27: Truck 604 started from depot 6, stops at three
customer locations delivering the respective amounts of 150,
140, and 100 units and coming back to the same originating
depot 6 among 300 trucks from 7 depots in total. The output
table shows the routing for all trucks with the respective
delivery amounts (bottom).

route of thousands of GPS emitting vehicles us-
ing a novel adaptive width Hidden Markov Chain
algorithm [19] shown in Figure 26. On one test
batch consisted of more than 300K sample points
belonging to 370 individual trips of varying degrees
of sampling frequencies between 0.5 seconds and 5
seconds, we were able to obtain results in less than
24 seconds using 8 cores where 95 percent of the
trips had match scores well below 1 meter over a
graph of approximately 7 million edges.

Another Match-Graph endpoint solver, a.k.a.,
MSDO (multiple supply demand optimization) enu-
merates millions of combinations in milliseconds
and provides the dynamic routing and tracking ca-
pability for the entire distribution fleet to thousands
of customer locations in the most optimal man-
ner [27]. Three hundred (300) trucks emanating
from seven depots all with varying capacities dis-
tribute over a set of three thousand and five hun-
dred customer locations with varying sizes of de-
mands. Our MSDO solver computes three hundred
truck routes in the most optimal manner in less
than two minutes (114 secs) using a multi-core (80
cores) single node platform over a geography of 400
miles across the Greater Jakarta region as shown in
Figure 27. The use of four graph servers in repli-
cated graph mode, further lessens this already fast
solve timing to a mere 45 seconds.

Another problem case is a classic multiple trav-
eling salesman problem: One thousand random
locations are generated and depicted as collec-
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Figure 28: Application of MSDO to the problem of multi-
ple traveling salesman (top-left); one thousand (1000) ran-
dom locations in DC metropolitan area is distributed using
Voronoi partitioning into ten (10) zones; each zone’s genera-
tor point is considered to be a collector (supply) picking from
collections in random locations (demands) shown in di↵er-
ent colors (bottom-left). The problem is cast into MSDO
format by considering one truck per collector of size equal to
the number of collections within the closure of the collector’s
own Voronoi zone (top and bottom-right, respectively).

tion locations within the metropolitan region of
Washington-DC. Kinetica’s ST voronoi geometry
function is invoked followed by a geo-join operation
to split and assign 1000 collections to 10 collectors
(generator points in Voronoi partitioning are user-
prescribed). The problem is to find the optimal
round trips for each of these ten collectors. This
classic multiple traveling salesman problem can be
cast into MSDO format as if there is one truck at
each collector of size equal to the number of collec-
tions they each need to visit. The results are shown
in Figure 28.

Kinetica-Graph’s powerful adjacency Query en-
gine is capable of traversing millions of graph nodes
starting from a set of nodes to a set of target nodes,
i.e., many-to-many fashion with at-scale perfor-
mance functionally compliant with the cypher lan-
guage but instead using its own extendible and flex-
ible graph grammar. As an example use-case from
the pharmaceutical industry, our Graph-Query en-
gine is able to find all the paths from a particular
gene set via the relevant links to evidence based
nodes leading to ‘documentation’ labeled nodes
within three hops in a 27 million graph in matters of
a few seconds for the large gene-evidence-document

Figure 29: Finding all the document (D) paths via evidences
(E) linked to either one of the genes NLRP3 and RPS15
by skipping the mutation links among the genes through
observations (O) within three (3) hops (top). Query-Graph
is able to find ⇡ 240K paths in a few seconds using multiple
graph servers (bottom).
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Figure 30: A distributed use case for solving the inverse
shortest paths against one million random point pairs around
Dallas-Fort Worth area. SQL Solve-Graph call (top), and
the resulting WKT linestring paths shown in di↵erent colors
with respect to the cost value by a WMS image visualization
call (bottom). Four (4) Graph-Servers complete the task in
25 seconds on a 8 core machine of 24 GBytes of memory.

database as shown in Figure 29.
Our batch solver, runs with at-scale and at-pace

performance against 1 million wkt point pairs on a 8
core laptop using 4 Graph-Servers under 25 seconds
(6 minutes with all WKT linestring paths) as shown
in Figure 30 with the accompanying Solve-Graph
endpoint in SQL (each WKT linestrings paths have
an average of ⇡ 500 chars).

Finally, we have instrumented an automatic in-
gestion framework for our users to construct geo-
based graphs given any arbitrary lon/lat WKT
bounding box as input over the freely available
Open Street Map database [28] for the USA and its
territories, otherwise a monumental task of gener-
ating over 260 million edge roads including the ser-
vice roads with weights set based on the legal speed
limits. We have devised an adaptive splitting strat-
egy like quad-tree but more flexible in that it can
refine more than two-levels in adjacent quads, into
separate CSV files (1200 in total) when the number
of nodes within each quadrant becomes more than
half a million as shown in Figure 31. These files
are stored in our file servers available for ingesting
externally to Kinetica-DB and get updated peri-
odically. When the user inputs a bounding box in
lon/lat, we then find the intersecting quadrants and
their corresponding CSV files to load from the stor-
age into Kinetica-DB so that a single Create-Graph
call could stitch the contents of multiple quadrants
(CSV) properly to form one connected graph. Note

that, the divisions are specifically constructed to
result in non-overlapping edges shared by the quad
tiles.

It is also worth noting that in general the scalar
field of edge weights (impedances) can be modified
spatially with appropriate identifiers such that the
solve time weights could be imposed based on the
changing tra�c patterns. Similarly, any image in-
put from an ML model can have an impact on the
shortest paths. For example, a scenic route is com-
puted instead of the shortest since the edge weights
are overridden based on the scenic scores (scores
close to zero when it is more scenic) computed by an
ML model in Kinetica. Thousands of images with
scene scores is spread over the graph network using
an inverse distance weighted interpolative manner
via theWEIGHTS identifier, as shown in Figure 32.

There are countless applications of Kinetica-
Graph, along with its hybrid distributed Kinetica-
DB; we only covered a few use cases in this paper,
however, the authors highly encourage the readers
to download and try exercising the Kinetica-Graph
endpoints under the guidance of hundreds of on-
line tutorials and publicly accessible videos. Ki-
netica’s Developer Edition is freely available here
https://www.kinetica.com/try/.

Future works on Kinetica-Graph would most
likely involve tighter integration with the ML mod-
els. Needless to say that we’d continue adding
new at-scale parallel graph solvers into our Graph-
Analytics stack to help increase the adoption of
Kinetica-Graph. We’d also work on increasing the
number of distributed algorithms for our many-to-
many queries and non-Dijkstra solvers such as page
rank and centrality between-ness using our robust
many graph servers framework.
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Figure 31: Adaptive division of US road network. OSM data is read and parsed into tiles that are adaptively divided when a tile
reaches more than half a million edge records. There are approximately 1200 tiles in separate CSV files generated adaptively
that corresponds to ⇡260 million edges in total.

Figure 32: Scenic route versus shortest path using the scenic scores of a ML model. The shortest path (top-left). Solve-Graph
call is passed a set of solve timeWEIGHTS via the combination of WEIGHTS WKTPOINT, WEIGHTS FACTORSPECIFIED
where the locations are the hundreds of images around Washington DC with scenicity scores inferred from an ML model (scores
close to zero if scenic otherwise one) (top-left). Internally the weights are interpolated by spreading the weight factor in an
inverse distance weighted manner as shown in the formula (bottom-left). Solve-Graph using Dijkstra results in a scenic path
due to the new weights favoring scenic routes (bottom-right).
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